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In the presence of a catalytic amount of methyl iodide, ytterbium metal can promote the reductive acylation of disul-
fides with 2-oxoimidazolidine-1-carbonyl chlorides to give 2-oxoimidazolidine-1-carbonyl thiolesters in good yields
under neutral conditions.
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Thiolesters are very important intermediates in organic syn-
thesis.1–4 For example, they have been used as mild acyl trans-
fer reagents,5 building blocks for heterocyclic compounds
(oxazoles,6 β-lactones7), and precursors for asymmetric aldol
reactions.8 Among several methods for the synthesis of thio-
lesters,9–12 the use of sulfide anions to react with acylating
agents is a convenient and common way.13 Taniguchi and his
co-workers14 have reported that ytterbium metal could pro-
mote the sulfide anion reaction with αβ-unsaturated ketones
in the presence of benzophenone. Here we report the coupling
reaction of disulfides with 2-oxoimidazolidine-1-carbonyl
chlorides promoted by ytterbium metal to form 2-oxoimida-
zolidine-1-carbonyl thiolesters in good yields. (Scheme 1) 

In our experimental work, it was found that when a solution
of disulfide in tetrahydrofuran (THF) was added to the brown
mixture of ytterbium metal in THF-HMPA, the colour of the
solution gradually turned to green within 2 h. This observation
suggested that the S–S bond was cleaved and the ytterbium

tri(arylthiolate) was formed.14 Subsequent nucleophilic sub-
stitution of 2-oxoimidazolidine-1-carbonyl chlorides by ytter-
bium tri(arylthiolate) [Yb(SAr)3] gave the corresponding
thiolesters. The results are summarised in Table 1. 

Table 1 shows that without HMPA the result of the reaction
is not satisfactory, even at reflux temperature (Entries 3a, 3h).
Table 1 also shows that electronic effect in the aromatic ring
affects the yields of 2-oxoimidazolidine-1-carbonyl thioles-
ters. If the substituted groups are electron-withdrawing groups
the yields are higher than those of electron-donating groups. A
possible mechanism14 is presented in Scheme 2.

Ytterbium metal is activated by CH3I to give the activated
[Yb∗], which gradually donates three electrons to the disulfide
to form [Yb(SAr)3]. As a strong nucleophile, [Yb(SAr)3]
reacts with 2-oxoimidazolidine-1-carbonyl chloride to form
the 2-oxoimidazolidine-1-carbonyl thiolester.

In summary, ytterbium metal promoted intermolecular cou-
pling reaction of disulfides with 2-oxoimidazolidine-1-car-
bonyl chlorides was studied, and a facile synthesis of
2-oxoimidazolidine-1-carbonyl thiolesters was provided in
good yields under mild and neutral conditions.

Experimental

Tetrahydrofuran was distilled from sodium-benzophenone immediately
prior to use. Commercial hexamethylphosphoramide was dried over
calcium hydride, distilled in vacuum and stored over 4 Å molecular
sieves. All reactions were carried out under a dry nitrogen atmosphere.
Melting points were uncorrected. Infrared spectra were recorded on a

Scheme 1

Table 1 Reaction of disulfides with 2-oxoimidazolidine-1-carbonyl chloride promoted by ytterbium metal

Entry R Ar Temperature/°C Reaction Time/h Yield/%a

3a H C6H5- 20-25 4 76
H C6H5- 20-25 4 47b

3b H p-ClC6H4- 20-25 3 81
3c H p-OCH3C6H4- 20-25 3 81
3d H p-CH3C6H4- 20-25 6 72
3e H m-OCH3C6H4- 20-25 3 79
3f CH3SO2 C6H5- 20-25 4 75
3g CH3SO2 o-BrC6H4- 20-25 3 83
3h CH3SO2 o-ClC6H4- 20-25 3 80

CH3SO2 o-ClC6H4- 65-70 3 63b

3i CH3SO2 p-ClC6H4- 20-25 3 80
3j CH3SO2 p-CH3C6H4- 20-25 6 73
aIsolated yield is based on disulfide and the reaction was carried on in THF-HMPA. 
bWithout the presence of HMPA



Bruker Vector 22 Spectrometer in KBr with absorption in cm–1. 1H
NMR spectra were recorded on a Bruker AC-80 spectrometer as D-
DMSO solutions. J values are in Hz. Chemical shifts are expressed in
ppm downfield from internal tetramethylsilane. Mass spectra were
recorded on a HP 5989B MS spectrometer. Microanalysis was carried
out on a Carlo Erba 1106 instrument. 2-Oxoimidazolidine-1-carbonyl
chlorides were prepared according to ref. 15.

General procedure: Ytterbium powder (0.173 g, 1 mmol) and a cat-
alytic amount of CH3I (1 drop) were added to a three-necked flask at
room temperature under a nitrogen atmosphere. The metal was then
warmed slightly to activate for about 15 min, and cooled to room tem-
perature.16 Addition of THF (10 ml) gave a brown mixture to which
HMPA (1 ml) was introduced, and then a solution of disulfide 
(1 mmol) in THF (1 ml) was added by syringe to the mixture at room
temperature. The brown colour of the mixture gradually changed to
green within 2 h. 2-Oxoimidazolidine-1-carbonyl chloride (3 mmol)
was added directly to the mixture. After being stirred for a given time
(see Table 1), the reaction mixture was quenched with dilute HCl 
(0.1 M) and extracted with ethyl acetate (3 × 30 ml). The crude prod-
uct was isolated in the usual way and purified by preparative thin layer
chromatography using ethyl acetate and cyclohexane (3 : 1) as eluent.

3a: white crystals, m.p. 152–154°C; 1H NMR (CDCl3, 80 Hz) 
δ: 3.37 (t, J = 8.4 Hz, 2H), 3.74–3.89 (m, 2H), 7.34–7.56 (m, 5H),
7.81 (br, s, 1H); IR (KBr) νmax: 3226, 3136, 2906, 1742, 1662, 1479,
1440, 1338, 1271, 905, 749, 706 cm–1; MS m/z (%) 222 (M+, 8), 110
(100), 84 (5), 77 (4), 70 (29); Anal. calcd for C10H10N2O2S: C 54.04,
H 4.53, N 12.60; found C 54.18, H 4.43, N 12.47. 

3b: light yellow crystals, m.p. 182–184°C; 1H NMR (CDCl3,
80 Hz) δ: 3.37 (t, J = 10.2 Hz, 2H), 3.75–3.92 (m, 2H), 7.32(d, 2H, J
= 7.0 Hz), 7.66 (d, 2H, J = 7.0 Hz), 7.86 (br, s, 1H); IR (KBr) νmax:
3229, 3130, 2907, 1735, 1668, 1572, 1472, 1390, 1332, 1279, 1090,
1014, 908, 824 cm–1; MS m/z (%) 258 (M+2, 9.1), 256 (M+, 26.3), 144
(100), 113 (36), 108 (25), 70 (46); Anal. calcd for C10H9ClN2O2S: C
46.79, H 3.53, N 10.91; found C 46.63, H 3.63, N 11.06.

3c: light yellow crystals, m.p. 184–185°C; 1H NMR (CDCl3,
80 Hz) δ: 3.34 (t, J = 10.5 Hz, 2H), 3.73 (s, 3H), 3.79–3.92 (m, 2H),
7.02 (d, J = 8.8 Hz, 2H), 7.30 (d, J = 8.8 Hz, 2H), 7.79 (br, s, 1H);
IR (KBr) νmax: 3257, 3137, 2922, 1726, 1666, 1595, 1494, 1399, 1336,
1289, 1247, 1176, 1030, 906, 827, 816 cm–1; MS m/z (%) 252 (M+, 17),
140 (100), 125 (33), 113 (5), 70 (25); Anal. calcd for C11H12N2O3S: C
52.37, H 4.79, N 11.10; found C 52.46, H 4.68, N 10.98.

3d: light yellow crystals, m.p. 135–137°C; 1H NMR (CDCl3,
80 Hz) δ: 2.34 (s, 3H), 3.35 (t, J = 8.7 Hz, 2H), 3.73–3.84 (m, 2H),
7.18 (d, 2H, J = 6.5 Hz), 7.38 (d, 2H, J = 6.5 Hz), 7.81 (br, s, 1H); IR
(KBr) νmax: 3230, 3136, 2920, 1725, 1656, 1484, 1400, 1335, 1287,
1066, 1017, 907, 809 cm–1; MS m/z (%) 236 (M+, 17), 124 (100), 113
(12), 91 (52), 70 (35); Anal. calcd for C11H12N2O2S: C 55.91, H 5.12,
N 11.86; found C 56.02, H 5.01, N 11.73.

3e: light yellow crystals, m.p. 143–145°C; 1H NMR (CDCl3,
80 Hz) δH: 3.39 (t, J = 7.0 Hz, 2H), 3.74 (s, 3H), 3.77–3.94 (m, 2H),
6.96–7.49 (m, 4H), 7.81 (br, s, 1H); IR (KBr) νmax: 3410, 3072, 2990,
2917, 1739, 1657, 1588, 1477, 1417, 1288, 1023, 880, 802, 696 cm–1;
MS m/z (%) 252 (M+, 17), 140 (100), 125 (33), 113 (5), 70 (25); Anal.
calcd for C11H12N2O3S: C 52.37, H 4.79, N 11.10; found C 52.55, H
4.61, N 10.96.

3f: light yellow crystals, m.p. 164–166°C. 1H NMR (CDCl3,
80 Hz) δH: 3.39 (s, 3H), 3.81–3.92 (m, 4H), 7.30–7.48 (m, 5H); IR (KBr)
νmax: 3016, 2936, 1723, 1677, 1472, 1441, 1400, 1345, 1279, 1168,
1127, 1015, 982, 946, 775, 751, 706 cm–1; MS m/z (%) 300 (M+, 32), 191
(77), 125 (21), 109 (62), 70 (100); Anal. calcd for C11H12N2O4S2: C
43.99, H 4.03, N 9.33; found C 43.83, H 4.12, N 10.96.

3g: light yellow crystals, m.p. 179–181°C. 1H NMR (CDCl3, 80
Hz) δH: 3.40 (s, 3H), 3.90–3.99 (m, 4H), 7.32–7.74 (m, 4H); IR (KBr)
νmax: 3032, 2936, 1739, 1681, 1475, 1390, 1351, 1277, 1250, 1167,
1125, 969, 767, 745, 565, 545 cm–1; MS m/z (%) 380 (M+2, 6.8) 378

(M+, 7.2), 299 (80), 191 (43), 187 (20), 108 (72), 79 (100); Anal.
calcd for C11H11BrN2O4S2: C 34.84, H 2.92, N 7.39; found C 34.99,
H 2.81, N 7.23.

3h: light yellow crystals, m.p. 176–178°C, 1H NMR (CDCl3,
80 Hz) δ: 3.37 (s, 3H), 3.86–3.96 (m, 4H), 7.29–7.67 (m, 4H); IR
(KBr) νmax: 3017, 2934, 1747, 1672, 1573, 1472, 1350, 1286, 1237,
1172, 975, 773, 755, 564, 541 cm–1; MS m/z (%) 336 (M+2, 2.6) 334
(M+, 7.1), 299 (26), 191 (19), 143 (29), 108 (29), 79 (100); Anal.
calcd for C11H11ClN2O4S2: C 39.46, H 3.31, N, 8.37; found: C 39.58,
H 3.22, N, 8.19.

3i: light yellow crystals, m.p. 178–179°C; 1H NMR (CDCl3, 80
Hz) δ: 3.36 (s, 3H), 3.88–3.96 (m, 4H), 7.25 (d, 2H, J = 7.0 Hz),
7.40 (d, 2H, J = 7.0 Hz); IR (KBr) νmax: 3023, 2956, 1724, 1678,
1575, 1474, 1398, 1346, 1278, 1168, 980, 821 cm–1; MS m/z (%) 336
(M+2, 4.2) 334 (M+, 11.7), 191 (72), 143 (30), 108 (31), 79 (100);
Anal. calcd for C11H11ClN2O4S2: C 39.46, H 3.31, N 8.37; found C
39.56, H 3.20, N 8.28. 

3j: light yellow crystals, m.p. 149–151°C, 1H NMR (CDCl3, 80 Hz)
δ: 2.36 (s, 3H) 3.36 (s, 3H), 3.84–3.95 (m, 4H), 7.27(d, J = 6.5 Hz,
2H), 7.33 (d, J = 6.5 Hz, 2H); IR (KBr) νmax: 3010, 2928, 1747, 1673,
1475, 1387, 1356, 1254, 1168, 975, 808, 772 cm–1; MS m/z (%) 314
(M+, 20), 191 (38), 123 (53), 91 (9), 79 (100); Anal. calcd for
C12H14N2O4S2: C 45.84, H 4.49, N 8.91; found C 45.71, H 4.57, N 9.03. 
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